首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   147篇
  国内免费   2篇
  2023年   3篇
  2022年   4篇
  2021年   32篇
  2020年   9篇
  2019年   29篇
  2018年   46篇
  2017年   32篇
  2016年   51篇
  2015年   87篇
  2014年   78篇
  2013年   119篇
  2012年   145篇
  2011年   120篇
  2010年   83篇
  2009年   75篇
  2008年   95篇
  2007年   133篇
  2006年   112篇
  2005年   104篇
  2004年   114篇
  2003年   110篇
  2002年   92篇
  2001年   9篇
  2000年   10篇
  1999年   21篇
  1998年   32篇
  1997年   25篇
  1996年   9篇
  1995年   18篇
  1994年   17篇
  1993年   15篇
  1992年   7篇
  1991年   13篇
  1990年   13篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   9篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   2篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1964年   1篇
排序方式: 共有1944条查询结果,搜索用时 31 毫秒
71.
Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans). In L6 myotubes, CA was a potent reactive oxygen species (ROS) scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK) pathway and displayed various features associated with AMPK activation: CA (a) enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx) and superoxide dismutase (SOD) activities, (b) favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c) increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d) inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin) were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5–100 μM). These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.  相似文献   
72.

Background

The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues.

Methodology/Findings

A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC−MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28) than in the pollen (n = 23) or honey bee (n = 20) samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods.

Conclusions/Significance

Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.  相似文献   
73.
The pinewood nematode, Bursaphelenchus xylophilus, native to North America, is the causative agent of pine wilt disease and among the most important invasive forest pests in the East-Asian countries, such as Japan and China. Since 1999, it has been found in Europe in the Iberian Peninsula, where it also causes significant damage. In a previous study, 94 pairs of microsatellite primers have been identified in silico in the pinewood nematode genome. In the present study, specific PCR amplifications and polymorphism tests to validate these loci were performed and 17 microsatellite loci that were suitable for routine analysis of B. xylophilus genetic diversity were selected. The polymorphism of these markers was evaluated on nematodes from four field origins and one laboratory collection strain, all originate from the native area. The number of alleles and the expected heterozygosity varied between 2 and 11 and between 0.039 and 0.777, respectively. First insights into the population genetic structure of B. xylophilus were obtained using clustering and multivariate methods on the genotypes obtained from the field samples. The results showed that the pinewood nematode genetic diversity is spatially structured at the scale of the pine tree and probably at larger scales. The role of dispersal by the insect vector versus human activities in shaping this structure is discussed.  相似文献   
74.
75.
Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.  相似文献   
76.
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.  相似文献   
77.
78.
79.

Aim

We recently described a human blood microbiome and a connection between this microbiome and the onset of diabetes. The aim of the current study was to assess the association between blood microbiota and incident cardiovascular disease.

Methods and Results

D.E.S.I.R. is a longitudinal study with the primary aim of describing the natural history of the metabolic syndrome and its complications. Participants were evaluated at inclusion and at 3-, 6-, and 9-yearly follow-up visits. The 16S ribosomal DNA bacterial gene sequence, that is common to the vast majority of bacteria (Eubac) and a sequence that mostly represents Proteobacteria (Pbac), were measured in blood collected at baseline from 3936 participants. 73 incident cases of acute cardiovascular events, including 30 myocardial infarctions were recorded. Eubac was positively correlated with Pbac (r = 0.59; P<0.0001). In those destined to have cardiovascular complications, Eubac was lower (0.14±0.26 vs 0.12±0.29 ng/µl; P = 0.02) whereas a non significant increase in Pbac was observed. In multivariate Cox analysis, Eubac was inversely correlated with the onset of cardiovascular complications, (hazards ratio 0.50 95% CI 0.35–0.70) whereas Pbac (1.56, 95%CI 1.12–2.15) was directly correlated.

Conclusion

Pbac and Eubac were shown to be independent markers of the risk of cardiovascular disease. This finding is evidence for the new concept of the role played by blood microbiota dysbiosis on atherothrombotic disease. This concept may help to elucidate the relation between bacteria and cardiovascular disease.  相似文献   
80.
In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号